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1. Introduction

-- Two classes of properties are of particular interest when consdering prografs: safety properties
and liveness properties. Informally, a safety property stipulates tht "bad things" do not happen dur-
ing execution of a program and a liveness property stipulates that "good things" do happen (eventu-
ally) 1[21. Distinguishing between safety and liveness properties is useful because knowing whether a
property is safety or liveness helps when deciding how to prove that the property holds for a program.

In [11], formal definitions of safety and liveness are given and it is proved that every property
can be expressed as the conjunction of a safety property and a liveness property. The formal
definitions of safety and liveness are given in terms of first-order predicate logic, but the proof that
every property can be decomposed into safety and liveness is not-it uses topology. The purpose of

%this paper is to give a proof of this theorem using only first-order predicate logic.

2. Specifying Properties

A program state is a mapping from variables to values. An execution of a concurrent program
can be viewed as an infinite sequence of program states

a= S0O 1

which we call a history. In a history, so is an initial state of the program and each subsequent state
results from executing a single atomic action in the preceding state. (For a terminating execution, an
infinite sequence is obtained by repeating the final state.) A property is a set of such sequences.

One way to specify a property is by using first-order predicate logic. For a state s, define s.v to
be the value of variable v in that state. A formula of first-order predicate logic where s is the only free
variable defines a set of states. For example,

(Vi: I!5i<N: s.a[il:5s.a[i+l])

specifies the set of states in which the elements of array a[l:N] are sorted. Usually "s." is implicit
and therefore left out of such a formula, resulting in the more familiar use of first-order predicate
logic as an assertion language.

A set of sequences of states-a property--can also be defined using first-order predicate logic.
To facilitate such specifications, for any sequence a = so s I ... define for Oi:

0(i] a si.
C[i] a Sos, ... si-1. The empty sequence if i =0.

IaI z the length of a (oif a is infinite).

A formula of first-order predicate logic in which 7 is the only free variable defines the set of
sequences that satisfy the formula and therefore specifies a property. For example,

(Vi: 05i: O[iIv=O)

specifies the property in which the value of v remains 0 throughout execution.
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We write al=P if o S" is in the property specified by P. Thus,

w-=P = Pga.

atfP = -pQ

3. Safety and Liveness

According to [1], a property P is a safety property provided

Safety: (Va: cc So': olP = (3i: 0<i: (Vp: 3E SW: [..iJ]1P))), (3.1)

where S is the set of program states, S* the set of finite sequences of states, S) the set of infinite
sequences of states, and juxtaposition is used to denote catenation of sequences. A property P is a
liveness property provided

Liveness: (Va: ar S*: (3p: P3E SW: ap3=P)). (3.2)

Given a property P, we are interested in defining properties Safe (P) and Live (P) such that

" Safe (P) is a safety property,

* Live (P) is a liveness property, and

" P = Safe (P) A Live (P).

Observe that if

Safe (P) = P v Mp
Live (P) = P v--,Mi

then

Safe (P) A Live (P) = (P V Mp) A (P V -,Mp)
= (P AP) V (P AMp) V (Mp AP) V (Mp A-,Mp)
= P

Hence, we have only to look for an M, that makes P v Mp (i.e. Safe (P)) a safety property and
P v --,Mp (i.e. Live (P)) a liveness property.

It turns out that using

Mp: (Vi: 05i: (3: Pe SW: c[..i]3=P))

suffices. First, we show formally that Safe (P) satisfies definition (3.1) of safety. The proof that fol-
lows is a sequence of first-order predicate logic formulas with explanations interspersed (and delim-
ited by v and *) of how each formula is derived from its predecessor.

Choose any cE S:

aWSafe (P)
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cby definition of Safe (P)*
= aW:(Pv(Vi: 0O5i: (313: 3E SW: a[AII3I=P)))

(<by definition of 1# *
= -1(Pv(Vi: 05i: (313: 3E S': .iI3P))

*by substitution*
= -(P v(Vi: 05i: (3p3: I3ESW: a;[..iI13P)))

oby De Morgan's Laws))
-, -PA (3i: 05i: (VP3: PE SO: o[..]131#P))

4A A B =B*
=(3i: O:Si: (VP3: PESO): 0[i]1P1#P))

4because (Vx:: A) =(Vx:: A A(Vy:: Ax))*.
= (3i: 05i: (VP3: 0 E S'O: G[..iI13I&A (VY' YE So): O[..iy 1P)))

<<because true AP = Pand ([A.i1p)[..iI = [AI *
-(3i: 05i: (VP3: PE So): a[..i1315iP A (i=i) A (VT. YE So': (0[..i]1)[..iYI'iP)))

<<by substitution*
-(3i: 05i: (V13: 0 C S': O[J..iI#~P A (k=i) A (VT. ye S': (7T[.i1P)[..kjY1#P) ))

ocby 3-Generalization*
=~(3i: 0!5i: (VP3: P3E SWO: CA..]13 PA (3k: k=i: (VT. YE So): ([.I3[.~I')

A (by Range Widening~o
~(3i: 0:5i: (V3: P3E S': 0[A.]1#P A (3k: 05k: (VT. ye So': (o[..iI1)[..k]YI 'P))))

<(by De Morgan's Law*
-(3i: 0:5i: (VP3: D3ES*: 0[..]13 'PA-,(Vk: 05k: (3y. yE S(W: ([.l3.ky=)

<,i:by definition of 1#
= O3i 0i: (VP3: D3E SW*: GAl..i1#P A a[A.iI13(Vk: 0!5k: (3T. YE SWO: ([..kjyt-P))))

4because cO#A A al#B = atI#(A v )
= (3i: O! i: (VO: 13E S': a[..iI1I(P v(Vk: 0O5k: (3 y: YE So): at..k jyPP)))))

qby definition of Safe (P)*
= (3i: O5i: (VP3: P3E S': a;[..i]13Sfe(P)))

'4 It is not surprising that Safe (P) is a safety property. If oI1"Safe (P) then, by definition, W#~Mp. How-

ever, this means there exists an i such that

We could consider prefix a[J I] to be a "bad thing". Thus, cy violates a safety property whenever

oWSafe (P).

We now show formally that Live (P) satisfies definition (3.2) of liveness.

.. (Va: aE S*: true)

osznce true = A v -A
=(Va: e S*: (313: P3E S': 40iIP) v-(35: 3e S': ct13=P))

* *renamning bound variable 13 to y*
= (Va: tE S*: (313: P3e S0: c43P) v-,(3-.yr ySW: cry P))

*since P is not free in (3T. YE SW: ayl=-P)*
= (Va: a eS *: (313: P r S 0: aj3=P v -,(3T. ye S0 : ay 1-P)))

vby De Morgan's Law*
= (Va: aE 5": (313: P3E SO: a131=P V (VY: YE S): ayh'P)))
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<(since trueAA =A*
= (Va: aES*: (3(3: (3ES': aP0lPV(IaI=IaI A(Vy YES'O: ay 'P))))

<(by substitution, since (cx1)[.. I al I]=a*
= (Va: aES*: (3p3: 3E SW0: cc(3=PV((i=IccI)i 1 A(V-f YE S':(a)[.yP)))

<<by 3-Generalization*o
S(Vax: aE S: (3p3: P3ESO: ocD=P v(3i: i= Ial: (VT.y YSW: (4).iy~))

<by Range Widening*
S(Va: aE S*: (3p3: PE SW*: apl3-P v (1i: O: i: (Vy. 'YE So): (c43)[.Jy #P))))

<<by De Morgan's Law*
= (Va: acE S*: (3(3: PE SW): c431=P v -,(Vi: O~i: (3y. yE So): (IM.~~)

<<by definition of c431=A *
= (Va: aE S: (3p3: P3E S(O: a(3=P vtI :5i: (3y yE So): Iiy=))

<dbecause a3l'=A v c431=-B = af31=(A v B)*
= (Voc: ae S: (3p3: P3ES : a40--(P v -(Vi: 05!: (3y YES(): aY[..iY0P))))

<(by definition of Live (P)*
= (Va: aE S*: (3p3: O3E S(W: c43=Live(P)))

oby Liveness definition (3.2)*
= Live (P) is liveness.

An informal justification that Live (P) is liveness is the following. If aIl#Uve (P) then, by definition,
* a-=Mp. From, WA=Mp, we conclude that it always remains possible for some "good thing" (i.e. P(in

Mp) to happen. This is the defining characteristic of liveness, so a violates a liveness property when-
ever a #Live (P).
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